ted only to the sulphate ions by hydrogen bonds and the water molecule lies between the sulphate ions and the hydroxyl group of the 1,3-diammonio-2-propanol cation. The role of the hydrogen bonds has been found to be similar in the bis(oxalato)cuprate(II) complex.

#### References

BERTRAND, J. A., MARABELLA, C. P. & VANDERVEER, D. G. (1977). *Inorg. Chim. Acta*, **25**, L69–L70.

CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321–324.

- International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.
- KIVEKÄS, R. (1977). Ann. Acad. Sci. Fenn. Ser. A2, No. 185.
- KIVEKÄS, R. & PAJUNEN, A. (1977). Cryst. Struct. Commun. 6, 477–483.
- PAJUNEN, A. & KIVEKÄS, R. (1979). Cryst. Struct. Commun. 8, 385-391.
- STEWART, J. M. (1976). The XRAY system version of 1976. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1980). B36, 958–961

# Structure of 3-[4,5-Bis(methoxycarbonyl)isoxazol-3-yl]-4,6-dioxo-syn-cis-syn-1,3,5triphenylperhydrothieno[3,4-c]pyrrole-1-carbonitrile

By I. UEDA

College of General Education, Kyushu University, Ropponmatsu, Chuo-ku, Fukuoka 810, Japan

## AND T. TAKATA AND O. TSUGE

Research Institute of Industrial Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812, Japan

(Received 18 September 1979; accepted 26 November 1979)

Abstract.  $C_{32}H_{23}N_3O_7S$ , monoclinic,  $P2_1/c$ , Z = 4, a = 12.764 (6), b = 22.90 (1), c = 10.647 (4) Å,  $\beta = 110.41$  (3)°,  $D_m = 1.351$ ,  $D_x = 1.334$  Mg m<sup>-3</sup>. The structure was solved by the symbolic-addition procedure; block-diagonal least-squares refinement led to a final R of 0.0425 for 3471 observed reflexions. Molecules are held together by van der Waals interactions. The condensed perhydrothiophene-pyrrolidine ring has a chair conformation. A partial selective ester-exchange reaction occurred during the recrystallization from ethanol at the more protruding methoxycarbonyl group.

**Introduction.** In contrast to the adduct of 1,3-diphenylthieno[3,4-c][1,2,5]thiadiazole and *N*-phenylmaleimide (Tsuge, Takata & Ueda, 1979), neither the *endo* nor the *exo* adduct of 1,3-diphenylthieno[3,4-c]-[1,2,5]oxadiazole and the imide underwent a thermal retro-cycloaddition reaction, but reacted with dimethyl acetylenedicarboxylate (DMAD) to yield the corresponding 1:1 adduct (Tsuge, Takata & Noguchi, 1977). The product was assumed from spectroscopy to be a 1,3-cycloadduct of the nitrile oxide generated *in situ* from a ring opening of the oxadiazole moiety of the initial reactant, and DMAD (Tsuge, Takata & Ueda, 1979). Therefore, the X-ray analysis of the title compound was carried out to provide conclusive evidence for the chemical structure of the product obtained from the reaction of the *endo* adduct with DMAD.

The title compound (Fig. 1) was recrystallized at 313 K from an ethanol solution as colorless prisms. Preliminary Weissenberg photographs showed the space group to be  $P2_1/c$ . The unit-cell parameters were refined by a least-squares procedure using the  $2\theta$  values of 15 reflexions measured on a Syntex P1 four-circle diffractometer. The density was measured by flotation in an aqueous KI solution. A cylindrical crystal (length 0.45 mm, diameter 0.39 mm) was used for the data collection. The intensities of 5746 reflexions within  $2\theta \leq 50^{\circ}$  were measured by the  $\theta$ -2 $\theta$  scan technique (monochromated Mo  $K\alpha$  radiation), of which 3471 independent reflexions with  $I > 2.33\sigma(I)$  were used for the analysis. Corrections for Lorentz and polarization effects and for fluctuation of the monitored intensity were applied, but not for absorption ( $\mu = 0.166 \text{ mm}^{-1}$ for Mo  $K\alpha$ ).

The structure was solved by the direct method using the program *MULTAN* (Germain, Main & Woolfson, 1971) and refined by a block-matrix least-squares © 1980 International Union of Crystallography

0567-7408/80/040958-04\$01.00

# C32H23N3O7S

#### Table 1. Final atomic coordinates with their e.s.d.'s in parentheses

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x                                                                                                                                                                                                                                                                                                                                                                                         | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  | x                                                                                                                                                                                                                                                                                                                                             | у                                                                                                                                                                                                                                                                                                                                                                 | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SC(1)<br>CC(2)<br>CC(2)<br>CC(4)<br>CC(5)<br>CC(6)<br>CC(78)<br>CC(12)<br>CC(12)<br>CC(112)<br>CC(112)<br>CC(112)<br>CC(112)<br>CC(112)<br>CC(112)<br>CC(112)<br>CC(112)<br>CC(112)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22)<br>CC(22) | 0.35082(6)<br>0.3209(2)<br>0.2019(2)<br>0.1240(2)<br>0.0208(2)<br>0.1396(2)<br>0.4120(2)<br>0.4161(3)<br>0.5766(3)<br>0.5746(3)<br>0.5746(3)<br>0.5746(3)<br>0.3213(3)<br>-0.1423(3)<br>-0.1243(3)<br>-0.1243(3)<br>-0.1244(3)<br>0.1334(3)<br>0.1846(2)<br>0.1334(3)<br>0.1156(3)<br>0.1473(3)<br>0.1979(4)<br>0.270(3)<br>0.2637(2)<br>0.2638(3)<br>0.5549(4)<br>0.2300(3)<br>0.1802(5) | 0.36563(3<br>0.3225(1)<br>0.2984(1)<br>0.2984(1)<br>0.3383(1)<br>0.3330(1)<br>0.3306(1)<br>0.2760(1)<br>0.2294(2)<br>0.1871(2)<br>0.294(2)<br>0.1911(2)<br>0.281(2)<br>0.2807(2)<br>0.3619(1)<br>0.3666(1)<br>0.3666(1)<br>0.3668(2)<br>0.2694(2)<br>0.2682(1)<br>0.4628(2)<br>0.2682(1)<br>0.4628(2)<br>0.4437(2)<br>0.3912(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0.3745(2)<br>0. | ) $0.06438(7)$<br>0.1942(3)<br>0.1981(3)<br>-0.0068(3)<br>-0.0075(3)<br>-0.0126(3)<br>0.2458(3)<br>0.2458(3)<br>0.2458(3)<br>0.2458(3)<br>0.2109(4)<br>0.3365(4)<br>0.3716(3)<br>0.1325(3)<br>0.1725(4)<br>0.2329(3)<br>0.1557(3)<br>-0.1557(3)<br>-0.2533(3)<br>-0.3349(4)<br>-0.3721(4)<br>-0.2409(3)<br>0.1254(3)<br>0.0751(3)<br>-0.2033(3)<br>-0.3721(4)<br>-0.2409(3)<br>0.1254(3)<br>0.1254(3)<br>0.2243(6)<br>0.2443(6)<br>0.2986(3)<br>0.4576(5) | N(1)<br>N(2)<br>N(3)<br>O(2)<br>O(2)<br>O(5)<br>O(6)<br>H(C5)<br>H(C10)<br>H(C12)<br>H(C12)<br>H(C15)<br>H(C15)<br>H(C16)<br>H(C16)<br>H(C22)<br>H(C22)<br>H(C22)<br>H(C22)<br>H(C22)<br>H(C23)<br>H(2C30)<br>H(2C32)<br>H(2C32) | 0.0193(2)<br>0.3225(3)<br>0.0987(2)<br>0.1469(2)<br>-0.0594(2)<br>0.1072(2)<br>0.3730(2)<br>0.4447(2)<br>0.3027(2)<br>0.1642(2)<br>0.133(2)<br>0.138(3)<br>0.636(3)<br>0.634(4)<br>0.498(3)<br>0.634(4)<br>0.498(3)<br>0.634(4)<br>0.224(3)<br>-0.224(3)<br>-0.254(3)<br>0.108(3)<br>0.108(3)<br>0.260(3)<br>0.597(5)<br>0.546(4)<br>0.246(4) | 0.3155(1)<br>0.3924(1)<br>0.4365(1)<br>0.2797(1)<br>0.3554(1)<br>0.5200(1)<br>0.5200(1)<br>0.5074(1)<br>0.5677(1)<br>0.257(1)<br>0.257(1)<br>0.226(2)<br>0.151(2)<br>0.317(2)<br>0.402(2)<br>0.402(2)<br>0.402(2)<br>0.402(2)<br>0.402(2)<br>0.488(2)<br>0.233(2)<br>0.455(2)<br>0.455(2)<br>0.357(2)<br>0.357(2)<br>0.555(2)<br>0.490(2)<br>0.651(2)<br>0.607(2) | $\begin{array}{c} 0.1148(2)\\ 0.3891(3)\\ 0.1117(3)\\ 0.3118(2)\\ -0.0965(2)\\ 0.1972(2)\\ 0.220(3)\\ 0.3019(3)\\ 0.3696(3)\\ 0.3696(3)\\ 0.095(3)\\ -0.089(3)\\ 0.095(3)\\ -0.089(3)\\ 0.071(4)\\ 0.372(4)\\ 0.372(4)\\ 0.510(4)\\ 0.372(4)\\ 0.510(4)\\ 0.372(4)\\ 0.510(4)\\ 0.368(3)\\ 0.154(4)\\ 0.265(4)\\ 0.300(4)\\ 0.265(4)\\ 0.368(4)\\ -0.517(4)\\ -0.368(4)\\ -0.517(4)\\ -0.368(4)\\ -0.517(4)\\ -0.368(4)\\ -0.517(4)\\ -0.334(5)\\ 0.178(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\ 0.543(5)\\$ |
| ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0/03(15)                                                                                                                                                                                                                                                                                                                                                                                | 0.0391001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U.4DUI(I/)                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

\* The occupancy is 0.3.

method. An E map calculated with a phase set having the highest figure of merit (1.40) for 351 reflexions  $(E \ge 1.7)$  revealed all 43 non-hydrogen atom positions, which coincided with the proposed molecular structure. In the course of the refinement, a difference Fourier map showed an abnormally high peak at the H atom [H(3C32)] corresponding to the most protruding C



Fig. 1. The structural formula.

atom of the methoxycarbonyl moieties. The NMR spectra of the crystals used in this analysis showed that one of the methoxycarbonyl groups was partially replaced with ethoxycarbonyl in ethanol solution by ester-exchange reactions during recrystallization. The disordered structure was taken into account during the refinement. For the final three cycles of refinement, the weighting scheme was changed from unit weight to  $w = a_1 + b_1 |F_o|$  for  $|F_o| < F_1$ ,  $w = c_2$  for  $F_1 \le |F_o| \le F_2$  and  $w = d_3/(a_3 + b_3|F_o| + c_3|F_o|^2)$  for  $|F_o| > F_2$  where the constants were selected as follows:  $F_1 = 18.90$ ,  $F_2 = 36.0$ ,  $a_1 = 0.8031$ ,  $b_1 = 0.0177$ ,  $c_2 = 1.0$ ,  $a_3 = 2.6052$ ,  $b_3 = -0.0786$ ,  $c_3 = 0.0011$  and  $d_3 = 0.9799$ . The final R value was 0.0425 for the observed reflexions. A final difference Fourier map had no spurious peaks greater than 0.25 e Å<sup>-3</sup>. The final atomic coordinates are listed in Table 1.\*

The atomic scattering factors and the anomalousdispersion factors were taken from *International Tables for X-ray Crystallography* (1974). All calculations were performed on a FACOM M-190 com-

<sup>\*</sup> Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34923 (37 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

C<sub>32</sub>H<sub>23</sub>N<sub>3</sub>O<sub>7</sub>S



Fig. 2. A stereoview of the molecular conformation.

puter at the Computer Center of Kyushu University with the UNICS II program system (Sakurai, Iwasaki, Watanabe, Kobayashi, Bando & Nakamichi, 1974).

**Discussion.** Fig. 1 shows the structural formula for one of the racemic molecules. Fig. 2 shows a stereoview of the molecular conformation for the non-hydrogen atoms together with the atom numbering, drawn with the program ORTEP (Johnson, 1965). The racemic molecules are held together by van der Waals forces.

All the bond distances, given in Table 2, are very close to the expected values (*International Tables for X-ray Crystallography*, 1962). The bond angles are also normal (Table 3). The molecule consists of a condensed perhydrothiophene-pyrrolidine ring, an

#### Table 2. Interatomic distances

| $\begin{array}{c} \text{S} & -\text{C(1)} \\ \text{s} & -\text{C(6)} \\ \text{c(1)} & -\text{C(2)} \\ \text{c(1)} & -\text{C(2)} \\ \text{c(1)} & -\text{C(7)} \\ \text{c(2)} & -\text{C(3)} \\ \text{c(2)} & -\text{C(3)} \\ \text{c(2)} & -\text{C(5)} \\ \text{c(3)} & -\text{N(1)} \\ \text{c(3)} & -\text{O(1)} \\ \text{c(3)} & -\text{O(1)} \\ \text{c(4)} & -\text{C(5)} \\ \text{c(4)} & -\text{C(5)} \\ \text{c(4)} & -\text{C(5)} \\ \text{c(6)} & -\text{C(20)} \\ \text{c(5)} & -\text{H(C5)} \\ \text{c(6)} & -\text{C(20)} \\ \text{c(6)} & -\text{C(20)} \\ \text{c(6)} & -\text{C(20)} \\ \text{c(6)} & -\text{C(20)} \\ \text{c(7)} & -\text{C(12)} \\ \text{c(6)} & -\text{C(20)} \\ \text{c(6)} & -\text{C(12)} \\ \text{c(6)} & -\text{C(12)} \\ \text{c(8)} & -\text{H(C8)} \\ \text{c(9)} & -\text{C(10)} \\ \text{c(8)} & -\text{H(C8)} \\ \text{c(9)} & -\text{C(10)} \\ \text{c(10)} & -\text{C(11)} \\ \text{c(10)} & -\text{H(C10)} \\ \text{c(10)} & -\text{H(C11)} \\ \text{c(12)} & -\text{H(C12)} \\ \text{c(11)} & -\text{C(12)} \\ \text{c(12)} & -\text{H(C12)} \\ \text{c(14)} & -\text{C(15)} \\ \text{c(14)} & -\text{C(15)} \\ \text{c(15)} & -\text{H(C15)} \\ \text{c(16)} & -\text{H(C5)} \\ \text{c(16)} & -\text{H(C15)} \\ \end{array}$ | $\begin{array}{c} 1.843(3)\\ 1.848(3)\\ 1.551(4)\\ 1.552(4)\\ 1.522(4)\\ 1.522(4)\\ 1.522(4)\\ 1.922(4)\\ 1.922(4)\\ 1.392(4)\\ 1.224(4)\\ 1.97(4)\\ 1.521(4)\\ 0.98(3)\\ 1.521(4)\\ 0.98(3)\\ 1.521(4)\\ 1.53(4)\\ 1.53(4)\\ 1.53(4)\\ 1.53(4)\\ 1.380(5)\\ 1.02(4)\\ 1.380(5)\\ 1.02(4)\\ 1.380(5)\\ 1.05(4)\\ 1.365(6)\\ 1.05(4)\\ 1.373(6)\\ 1.05(4)\\ 1.381(5)\\ 1.381(5)\\ 1.39(5)\\ 1.381(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.$ | Å | $\begin{array}{c} C(16) - H(C16) \\ C(17) - C(18) \\ C(17) - H(C17) \\ C(18) - C(19) \\ C(18) - H(C19) \\ C(20) - C(21) \\ C(20) - C(22) \\ C(21) - H(C21) \\ C(22) - C(23) \\ C(22) - H(C22) \\ C(23) - C(24) \\ C(23) - C(24) \\ C(23) - C(24) \\ C(25) - H(C24) \\ C(25) - H(C25) \\ C(26) - C(27) \\ C(26) - C(28) \\ C(27) - C(28) \\ $ | $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(15)-C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.377(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | C(32) - H2(2C32)<br>N(3) - O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.03(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | aule 5. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onu un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(17)-C(16)-H(C16) 122(2) $C(4)$ -N(1) -C(14) 123.7(2)<br>C(16)-C(17)-C(18) 120.5(4) $C(4)$ -N(1) -C(14) 123.7(2)         | $\begin{array}{ccccc} C(1) & -S & -C(6) \\ C(2) & -C(1) & -C(7) \\ C(2) & -C(1) & -C(7) \\ C(2) & -C(1) & -C(13) \\ C(7) & -C(2) & -C(3) \\ C(1) & -C(2) & -C(2) \\ C(1) & -C(2) & -H(C2) \\ C(3) & -C(2) & -H(C2) \\ C(3) & -C(2) & -H(C2) \\ C(3) & -C(2) & -H(C2) \\ C(2) & -C(3) & -N(1) \\ C(3) & -C(4) & -N(1) \\ C(5) & -C(4) & -N(1) \\ C(5) & -C(4) & -N(1) \\ C(5) & -C(4) & -N(1) \\ C(2) & -C(5) & -C(6) \\ C(2) & -C(5) & -C(6) \\ C(2) & -C(5) & -C(6) \\ C(2) & -C(5) & -H(C5) \\ C(4) & -C(5) & -H(C5) \\ C(4) & -C(5) & -H(C5) \\ C(5) & -C(6) & -C(26) \\ C(20) & -C(6) & -H(C8) \\ C(7) & -C(18) & -H(C8) \\ C(9) & -C(10) & -H(C1) \\ C(10) & -C(11) & -H(C11) \\ C(10) & -C(11) & -H(C11) \\ C(10) & -C(11) & -H(C12) \\ C(11) & -C(12) & -H(C12) \\ C(11) & -C(14) & -H(C12)$ | 93.3(1)°   93.3(1)°   114.9(2)   111.1(3)   110.4(3)   112.7(3)   109(2)   105.5(3)   104(2)   110(2)   107.9(3)   126.6(3)   125.6(3)   125.2(3)   104.5(2)   113.4(3)   106(2)   113.4(3)   120.6(2)   113.4(3)   120.6(3)   120.2(2)   120.3(4)   120(2)   120.3(4)   120(2)   120.8(4)   121(3)   118.3(3)   119.6(4)   121.3(3)   122(2)   120.8(4)   121.3(3)   118.8(3)   118.8(3)   118.8(3)   118.8(3)   118.8(3)   118.8(3)   118.8(3)   118.8(3)   118.4(3)   119.2(2)   122.2(2)   122.2(2) | C(17)<br>C(19)<br>C(14)<br>C(14)<br>C(14)<br>C(14)<br>C(14)<br>C(20)<br>C(21)<br>C(22)<br>C(21)<br>C(22)<br>C(21)<br>C(22)<br>C(21)<br>C(22)<br>C(21)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(2)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C | -c(18)-H(C18)   -c(18)-H(C18)   -c(19)-C(18)   -c(19)-H(C19)   -c(20)-C(21)   -c(20)-C(25)   -c(21)-H(C21)   -c(20)-C(25)   -c(21)-H(C21)   -c(22)-C(23)   -c(22)-H(C22)   -c(22)-H(C22)   -c(22)-H(C22)   -c(22)-H(C22)   -c(23)-H(C23)   -c(23)-H(C23)   -c(23)-H(C23)   -c(24)-H(C24)   -c(25)-H(C25)   -c(25)-H(C25)   -c(26)-N(3)   -c(26)-N(3)   -c(27)-C(28)   -c(28)-O(3)   -c(29)-O(5)   -c(28)-O(3)   -c(29)-O(5)   -c(30)-H(2C30)   -c(30)-H(3C30)   -c(31)-O(7)   -c(32)-C(33)   -c(32)-H(C32)   -c(32)-H(C32)   -c(32)-H(C32)   -c(32)-H(C32)   -c(31)-O(7)   -c(32)-H(C32)   -c(32)-H(C32)   -c(32)-H(C32)   -c(32)-H(C32)   -c(32)-H(C32) | 121(2)*<br>119(2)<br>119.2(3)<br>120(2)<br>121(2)<br>121.2(3)<br>120.1(3)<br>118.9(3)<br>118(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(2)<br>120(3)<br>104.3(3)<br>115.(5)<br>105.(5)<br>125.9(4)<br>109(3)<br>105(5)<br>125.9(4)<br>109(3)<br>105(5)<br>125.9(4)<br>109(3)<br>105(5)<br>125.9(4)<br>109(3)<br>105(5)<br>125.9(4)<br>109(3)<br>106(3)<br>97(3)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.7(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2)<br>123.4(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                      | C(16)-C(17)-C(18)<br>C(16)-C(17)-H(C17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.5(4)<br>120(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(26)<br>C(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -N(3) -O(3)<br>-O(3) -N(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 106.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(18)-C(17)-H(C17) 119(2) $C(29)$ -0(5) - $C(30)$ 116.4(4)<br>C(17)-C(18)-C(19) 120.1(4) $C(31)$ -0(7) - $C(32)$ 116.6(5) | C(18)-C(17)-H(C17)<br>C(17)-C(18)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119(2)<br>120.1(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(29)<br>C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0(5) - C(30)<br>-0(7) - C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116.4(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table 3 Rond analas

isoxazole ring with ethoxy- and methoxycarbonyl groups, a cyano group and three benzene rings. The condensed ring has a chair conformation as shown in Fig. 2. The other four rings are planar. The angles made by the three benzene rings with respect to the pyrrolidine ring are successively 43, 51 and 98° with increasing atom number. These different tilting angles may cause the small differences of the chemical shifts between the H(C2) and H(C5) atoms observed in the NMR spectrum. If we compare the difference between the methoxy- and ethoxycarbonyl moieties, the latter is more protruded from the molecule, and the bond distance C(29)-O(5) is slightly shorter than that of C(31)-O(7). The selective ester-exchange reaction which occurred during the recrystallization may be affected by these factors.

The authors are grateful to Assistant Professor Shigeaki Kawano of Kyushu University for the use of the crystallographic programs.

### References

- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 276. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72–98. Birmingham: Kynoch Press.

Acta Cryst. (1980). B36, 961-962

# **3-Aminopropylphosphonic Acid**

### By T. GŁOWIAK AND W. SAWKA-DOBROWOLSKA

#### Institute of Chemistry, University of Wrocław, 14 Joliot-Curie, 50-583 Wrocław, Poland

(Received 30 May 1979; accepted 26 November 1979)

Abstract.  $C_3H_{10}NO_3P$ ,  $M_r = 139.01$ , orthorhombic,  $Pna2_1$ , a = 9.495 (2), b = 7.925 (1), c = 8.017 (1) Å, Z = 4,  $D_m = 1.53$  (by flotation),  $D_x = 1.53$  Mg m<sup>-3</sup>; final R = 0.062. The molecule exists as the zwitterion  $H_3^+N-(CH_2)_3-PO_3H^-$ . There are four independent hydrogen bonds in the structure; three are of the type  $N-H\cdots O$  with lengths 2.811, 2.812 and 2.831 Å, and one is of the type  $O-H\cdots O$  with length 2.522 Å.

Introduction. 3-Aminopropylphosphonic acid was prepared by a method developed by Dr R. Tyka at the Institute of Organic and Physical Chemistry, Technical University of Wrocław. Crystals suitable for X-ray analysis were colourless prisms. The space group and cell constants were obtained initially from Weissenberg photographs. The cell parameters were determined by least-squares refinement from the setting angles of 15 reflexions given by the automatic centring program  $[\lambda(Cu \ K\alpha) = 1.5418 \ \text{Å}]$ . All measurements for a crystal  $0.08 \times 0.15 \times 0.15$  mm were made on a Syntex P2<sub>1</sub> computer-controlled four-circle diffractometer equipped with a scintillation counter and graphite monochromator. 475 independent reflexions were measured up to  $2\theta = 114.0^{\circ}$  with the variable  $\theta$ -2 $\theta$  scan technique. The scan rate varied from 3.0 to  $20.0^{\circ}$  min<sup>-1</sup>, depending on the intensity. After each group of 15 reflexions the intensity of a standard was measured; no significant change was observed. The intensities were corrected for Lorentz and polarization factors, but not for absorption  $[\mu(Cu \ Ka) = 3.44$  $mm^{-1}$ ].

The structure was solved by the heavy-atom technique and refined anisotropically by full-matrix least squares. A difference synthesis revealed the positions of

0567-7408/80/040961-02\$01.00

# located. The coordinates of the H atoms and their

nine H atoms. The H atom of the OH group was not

isotropic thermal factor  $(B = 3 \cdot 8 \text{ Å}^2)$  were not refined. The final R = 0.062 and  $R_w = 0.081$  for 436 observed reflexions for which  $F > 3.92\sigma(F)$ . For all 475 reflexions R and  $R_w$  are 0.066 and 0.081. The function minimized was  $\sum w(|F_o| - |F_c|)^2$  with  $w = 1/\sigma^2(F)$ . Scattering factors for neutral atoms were taken from *International Tables for X-ray Crystallography* (1974). All calculations were performed with the Syntex *XTL* structure determination system on a Nova 1200

© 1980 International Union of Crystallography

## Table 1. Positional parameters $(\times 10^4; for H \times 10^3)$ with e.s.d.'s in parentheses

JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak

SAKURAI, T., IWASAKI, H., WATANABE, Y., KOBAYASHI, K.,

TSUGE, O., TAKATA, T. & NOGUCHI, M. (1977). Hetero-

TSUGE, O., TAKATA, T. & UEDA, I. (1979). Chem. Lett. pp.

BANDO, Y. & NAKAMICHI, Y. (1974). Rikagaku Ken-

Ridge National Laboratory, Tennessee.

kyusho Hokoku (in Japanese), 50, 75-91.

cycles, 6, 1173–1178.

1029-1032.

The atomic parameters of H were not refined;  $B_{iso} = 3.8 \text{ Å}^2$ .

|      | x         | У          | Z         |
|------|-----------|------------|-----------|
| Р    | 1559 (3)  | 2270 (1)   | 3500 (1)  |
| O(1) | 2769 (8)  | 3176 (11)  | 4570 (12) |
| O(2) | 1809 (8)  | 2422 (11)  | 1653 (12) |
| O(3) | 187 (8)   | 3063 (11)  | 4134 (13) |
| Ν    | 667 (10)  | -3548 (12) | 5087 (15) |
| C(1) | 1665 (13) | 65 (14)    | 4066 (18) |
| C(2) | 465 (14)  | -949 (13)  | 3220 (18) |
| C(3) | 697 (15)  | -2884 (14) | 3303 (21) |
| H(1) | 157       | -7         | 530       |
| H(2) | 259       | -42        | 370       |
| H(3) | 42        | -59        | 200       |
| H(4) | -44       | -67        | 377       |
| H(5) | 166       | -316       | 279       |
| H(6) | 4         | -347       | 262       |
| H(7) | 72        | -483       | 498       |
| H(8) | -23       | -322       | 578       |
| H(9) | 149       | -312       | 575       |